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Abstract. Decentralized environments distribute personal data across
numerous small, independent data sources; a necessity driven by legal
and socio-economic constraints that prevent the technologically more
convenient central aggregation. Link Traversal-based Query Processing
(LTQP) is a query technique that respects these constraints by itera-
tively discovering and accessing data sources while enabling fine-grained
access control. Unfortunately, current LTQP implementations are slow
due to limited prior knowledge of queried data and the high volume
of HTTP requests required. Prioritizing data sources likely to lead to
query-relevant data can improve query result arrival times. However,
while link prioritization algorithms have been studied for Linked Open
Data (LOD), their performance in structured decentralized environments
remains untested. Evaluating this performance is essential to establish
a baseline as a reference point for improving future implementations.
We formally define the R® metric to measure prioritization performance,
extend it to continuous efficiency, and account for real-world scenarios.
Furthermore, we provide modular and open-source implementations of
the prioritization algorithms from the literature. Finally, using the R®
metric with existing metrics from the literature, we benchmark these link
prioritization algorithms in a simulated Solid environment. In this paper,
we report the benchmark results, provide a thorough analysis, and lessons
learned for future work. We find that existing prioritization algorithms
fail to improve performance in structured decentralized environments,
with no non-Oracle method outperforming the look-up order produced
by a FIFO queue. We conclude that prioritization algorithms have little
benefit in a structured decentralized environment, and recommend that
research shift to pruning irrelevant links or improving the query plan.

Keywords: Link Traversal-based Query Processing - Benchmarking -
Link Prioritization

1 Introduction

While centralizing data can benefit query engine performance, it is often infeasi-
ble due to privacy and access control constraints. Decentralized platforms like



Solid [30] and Mastodon [28] promote storing data across many small sources
with agreed-upon structures, emphasizing user control over personal data. This
shift introduces technical challenges for query engines, which must discover and
query numerous small data stores, each with its own access policies.

Centralized querying requires collecting large amounts of personal data,
which is restricted by fine-grained access controls. Traditional federated ap-
proaches [33I3II8] support decentralization but assume a small number (10-100)
of known, uniformly accessible sources [7]. Enforcing fine-grained access control
policies [I0] on such large sources with expressive interfaces significantly impacts
performance [25].

In contrast, other decentralized environments involve a large number (thou-
sands) of pre-partitioned permissioned sources that use a wider range of data
interfaces consisting of generic HT'TP resources [39]. Due to the scale of de-
centralization, these resources may not all be known at query time. While this
does not offer clients the increased flexibility of an expressive query language
such as SPARQL, the lower per-resource generation cost makes granular access
control less costly. Such interfaces require a federation approach that can query
many data sources and interfaces, possibly discovered at runtime, without prior
centralization.

Link Traversal-based Query Processing (LTQP) meets these needs by dis-
covering new documents during execution via URIs found in earlier results.
Starting from seed documents (user-provided or query-derived), it follows links
asynchronously using a FIFO queue. LTQP enables federation at the granularity
of the environment, naturally supporting fine-grained access control.

However, the iterative discovery of documents during LTQP makes efficient
query processing difficult. Discovering sources on the fly challenges the optimize-
then-execute query paradigm, as it relies on prior knowledge of the queried data,
which is absent in this context. Improving LTQP query optimization and thus
performance is critical for enabling more interactive decentralized applications.

Link prioritization algorithms aim to reorder link dereferencing using a prior-
ity queue instead of FIFO. By dereferencing links likely to yield query-relevant
documents earlier, these algorithms can significantly reduce the time to first
result [I7] on Linked Open Data, improving perceived performance. This en-
ables interactive applications to display partial results quickly and improve user
experience through incremental loading [3137].

Prioritization algorithms can improve responsiveness in decentralized ap-
plications. However, their behavior in structured decentralized environments
remains unstudied. Prior work focused on the Linked Open Data (LOD) Cloud, a
large, unstructured, and open environment lacking consistent data organization.
In contrast, structured decentralized environments enforce predefined schemas,
changing the topology of the data web and influencing the performance of the
algorithms [17].

In this work, we define structured decentralized environments as decentralized
systems where data is organized according to predefined schemas, protocols, or
container models, enabling consistent access and reasoning across nodes. For



instance, the Solid ecosystem provides structure through the use of Linked Data
Platform containers and Type Indexes, allowing clients to make assumptions about
data completeness and discoverability. These structural properties are important
for effective source selection and query optimization [35]. While our experiments
focus on Solid, similar structural properties may arise in other decentralized
initiatives that enforce standardized data organization (e.g., ActivityPub [40]).

Evaluating existing prioritization algorithms in structured decentralized envi-
ronments is essential for identifying their strengths and limitations, providing
a baseline for comparison, and ensuring that new methods are built on a clear
understanding of what works and what doesn’t in these settings. An effective
baseline provides a reliable and meaningful standard for comparison. To support
robust evaluation, it should also be easily reproducible and built with a modular
implementation, enabling ablation studies and facilitating comparisons across
different engines and environments. Furthermore, future research on prioritiza-
tion benefits from modular baseline implementations, facilitating their reuse,
extension, and improvement.

Currently, prioritization algorithm implementations in the literature are
tied to the SQUIN engine [14], which is no longer maintained and therefore
unreliable as a baseline. Moreover, the reported results for these algorithms [17]
are influenced by the specific query engine used, its implementation details [I1],
and other unrelated optimization strategies [I3]. As a result, comparing these
results to those of new prioritization algorithms implemented in a different engine
introduces confounding factors, undermining the validity of the comparison.

To address this, we re-implement existing algorithms as modular packages in
Comunica [34], including necessary system changes for (adaptive) prioritization in
its iterator-based architecture. These implementations enable fair benchmarking
in structured decentralized environments using established metrics and a standard
benchmark [35].

To ensure this baseline facilitates performance comparisons across engines
and provides deeper insights into the marginal performance of prioritization
algorithms, we extend the R3 metric [9]. The R® metric evaluates the marginal
performance of prioritization algorithms in an implementation-independent man-
ner, enabling cross-engine comparisons and offering a clearer understanding of
prioritization performance without confounding noise.

We build on the previously introduced R3 metric [9] by formally defining
and extending the metric, and then using it in our experiment to measure the
marginal performance of prioritization algorithms from the literature. We thereby
aim to evolve the metric from a proof-of-concept to a rigorously validated tool
for prioritization researchers.

In summary, this paper makes the following contributions:

— Formal Definition of Link Prioritization Metrics We mathematically
define the R3 metric introduced in prior work and extend it with alternative
versions to account for real-world factors, including weighted dereference
events and continuous efficiency.



— Modular Design and Implementation of Prioritization Algorithms:
We reproduce existing link prioritization algorithms using a modular, iterator-
based architecture in a state-of-the-art LTQP engine designed for structured
decentralized environments. In addition, we include a new environment-
specific prioritization algorithm.

— Benchmarking and Evaluation of Link Prioritization in Structured
Decentralized Environments: We evaluate the implementation of pri-
oritization algorithms using the decentralized benchmark SolidBench [35],
analyzing their performance with existing metrics and newly defined varia-
tions of the R® metric.

2 Related Work

2.1 Link Traversal-based Query Processing

The seminal work on Link Traversal-based Query Processing (LTQP) [1514]
introduces a method for dynamically expanding and querying a local RDF dataset
by recursively dereferencing URIs found in previously dereferenced data. The
approach employs an iterator-based pipelining architecture to produce query
results continuously. In this framework, each physical operator is implemented as
an iterator that consumes input from its predecessor iterators. Before an iterator
can process an intermediate result, all URIs contained in that result must be
dereferenced and their corresponding RDF data integrated into the local dataset.
To avoid blocking query execution during URI lookups, the iterators are designed
to defer the processing of intermediate results for which the required URIs have
not been dereferenced and instead continue with the next input. Finally, to
prevent the dereferencing of an intractable number of URIs, reachability criteria
[16] are used to filter out likely irrelevant URIs. A widely adopted criterion,
cMatch, restricts traversal to URIs that match a triple pattern in the query,
reducing the number of links followed.

The next iteration of LTQP [I7] introduces three operator types: a data
retrieval operator (DR-operator), a dispatcher, and triple pattern operators (TP-
operators), one for each query pattern. The DR-operator dereferences URIs,
forwarding matching triples to their corresponding TP-operators. TP-operators,
inspired by Eddies [I], maintain an internal index of matching triples and probe it
for intermediate join results. Once a result has passed through all TP-operators, it
is output as a final result. This design enables flexible, adaptive query processing
by dynamically adjusting the execution order of TP-operators.

Recent advancements in LTQP for structured decentralized environments [35]
combine the iterator-based pipelining architecture with the DR-operator while
using structural cues from the target environment. This approach extracts links
from structure-indicating predicates, regardless of standard reachability criteria,
and employs Typelndexes [38] to identify URIs pointing to specific resources,
such as comments or posts. This effectively implements structurally informed
link prioritization. In the context of Solid, these predicates indicate the Linked
Data Platform (LDP) [22] structure used in Solid Pods.



2.2 Metrics for Link Traversal-based Query Processing

Database benchmarks have traditionally employed a variety of metrics to evaluate
query engine performance, measuring aspects such as query execution efficiency
and result correctness. This section examines metrics relevant to query execution
performance, specifically metrics usable for measuring link prioritization effec-
tiveness. Table [I] summarizes commonly used benchmark metrics across three
key attributes:

Continuous indicates whether the metric evaluates the continuous result pro-
duction performance of an engine, as opposed to the performance of an engine
at a single point.

Algorithm-bound indicates whether the metric isolates the performance of
a specific algorithm within a system or evaluates the combination of all
algorithms in a system.

Implementation-independent indicates whether the metric reflects perfor-
mance independent of implementation-specific details and optimizations,
rather than being influenced by how an algorithm is implemented.

The Query Response Time metric, commonly used in benchmarks like LUBM
[12], measures the total time to complete a query from the moment it is issued.
The Berlin SPARQL Benchmark (BSBM) [4] extends this by assessing metrics
such as the number of query mixes or specific query types executed per second,
along with minimum and maximum query execution times [24]. Diefficiency
metrics [2], on the other hand, evaluate continuous query engine performance by
calculating the area under the result arrival distribution curve within a specified
interval, effectively capturing the result arrival rate, where a higher rate indicates
faster result production.

For link traversal engines, metrics such as the time to retrieve the first,
last, and half of all results have been widely used [3539]. Since LTQP delivers
results incrementally through its iterator-based approach, optimizing result arrival
times is crucial for improving usability. To assess the impact of prioritization
algorithms in LTQP, researchers compare the relative result arrival time of these
algorithms against the total query execution time [I7], as prioritization primarily
affects result arrival rates rather than overall execution time. From Table [1| we
observe that these metrics capture both point-in-time and continuous system
performance, as well as the behavior of individual algorithms. However, they
lack implementation-independence, making direct comparisons across different
systems challenging.

3 Method

This section provides a formal mathematical definition of the R* metric [9],
previously only introduced informally. It also extends the metric to a novel
weighted version and introduces a new metric, R3*Cont, to measure continuous
prioritization efficiency. Lastly, we outline the prioritization algorithms used for
benchmarking.



Cont. Alg. Indep. | Metric

Query Response Time [12]

Queries per Second [4]

Query Mixes per Hour [4]

Min/Max Query Execution time [4)24]
Overall Runtime [4]

Time until First/Last Result [I7135]

v Relative Time Until First/Last Result [17]
v Diefficiency [2]

v v R? [9]
v v v R3Cont [proposed]

Table 1: Existing metrics tend to assess point-in-time rather than continuous
performance (Cont.) of an entire engine rather than isolated algorithms (Alg.) of
specific implementations rather than being implementation-independent (Indep.).
None capture the desired combination of all three, which our proposal addresses.

3.1 Preliminaries

SPARQL is a pattern-matching query language designed to query the RDF data
model. The RDF data model defines triples that describe statements. These triples
are formed from three disjoint sets B (blank nodes), L (Literals), and U (URIs),
and are of the form (s, p,0) € (BUU)xU x (BULUU). A triple uses an object o to
make a statement about subject s through predicate p. A finite collection of triples
forms a labeled directed graph called an RDF graph [32I27]. The simplest form of
SPARQL query is a Basic Graph Pattern (BGP) which is defined as a finite set
P = {tp1,...tp,} of triple patterns tp; € (VULUU) x (UUV)x (VULUU),
where V' is a set of variables. To evaluate SPARQL queries over RDF data, the
concept of solution mappings plays a central role. A solution mapping is a partial
function p : v — (U U L), where v is the set of variables appearing in the BGP
of query . Solution mappings associate variables with RDF terms, enabling the
identification of matches for the query’s graph patterns in the RDF graph.

In the context of Link Traversal, query execution involves dereferencing URIs
to retrieve the RDF graphs D embedded in these URIs. From the triples in these
graphs, new URIs are extracted based on a reachability criterion c. A reachability
criterion is a function ¢ : T x U x B — {true, false}, where T denotes the
infinite set of all possible data triples and B the infinite set of possible BGPs and
U as defined above. Reachability criteria determine whether a URI should be
considered reachable for a given BGP. An example of a reachability criterion is
cAll, which is true for all triples. [16]

3.2 Relevant Traversal Path

During LTQP, the engine must dereference all documents contributing to the
query result set to complete the query. However, during the traversal, the engine
could dereference query-irrelevant documents that contain no triples required



to answer the query. By defining the traversal path taken by the engine to
dereference all query-relevant documents, we can formally define a metric that
measures the efficiency of the path taken by the engine.

First, we must compute the where-provenance [5], the set of URIs to derefer-
ence to obtain all data required to answer the query, of each solution mapping .,
produced by conjunctive query QF° with P a BGP, and S a finite set of seed
URIs. The evaluation of query Q% depends on the subset of reachable data
during traversal. This reachable sub-web WS [T6] denotes the set of discoverable
URISs given a reachability criterion, seed URI, and BGP. The evaluation of Q%
on W5 produces the solution mapping QF(W).

Given where-provenance annotations D, with u, € QS (W), we can define
the set of URIs required to be dereferenced to produce the result as

Dr= |J Du. (1)
M?LEQSYS(W)

During query execution, URIs are sequentially dereferenced and added to
the queried data. This produces a traversal order of URIs (WP, <), a totally
ordered set with order

Vdy,dy € WO 1 dy < dy < t(d,) < t(dy). (2)

With ¢(d,) the timestamp when the engine finished dereferencing URI d,,.
Assuming deterministic HTTP request times, this ordering is produced by apply-
ing a traversal order algorithm during query execution. Using this ordering, we
define the totally ordered set

Ry = (D7,=) (3)

as the query-relevant documents ordered by their dereference time. We use
this to define the minimal set of dereferenced documents required to dereference
all query-relevant documents:

O = {d; € (WP, L) | t(d;) < max{t(d) | d € D}}. (4)

This set includes all documents with a dereference timestamp smaller than
the maximal timestamp among the query-relevant documents. In simpler terms,
it represents the traversal path followed by the engine to retrieve all documents
necessary for answering the query.

3.3 Optimal Traversal Path for Induced Sub-Web

To compare the performance of link traversal algorithms with an optimal oracle
algorithm we will first introduce the notion of a traversed topology during



LTQP. During query execution, the engine traverses the sub-web WC(S’P) of
documents belonging to URIs. While the engine will only dereference a URI once,
multiple documents can contain references to the same URI. Thus, the engine’s
traversal path produces a directed (possibly cyclic) unweighted graph TWC(S’P)
with sources S.

In this formulation, we can consider the set D7 to be a set of terminals
in TWC(S‘P)’ then finding the optimal traversal path for the engine is similar to
finding the minimum directed Steiner tree.

The Steiner tree problem in directed graphs is defined as follows [6/T9]. For
a directed graph G = (V, A), with ¢(a) the cost of arc a € A, root node r € V', and
terminals 7' C V, the objective is to find the minimum cost sub-graph starting
at r and spanning all vertexes 7.

The cost for such a sub-graph X = (V’; A’) in a directed graph is given as

C(xX)=Y" _ clo) (5)

where c¢(a) = 1 for all a € A. The topology needs a singular root node to
formulate traversed topologies as a Steiner tree for directed graph problem.
However, topologies can have multiple root nodes corresponding to the seed
documents supplied to the query. So, we can add a new root node 7 to our
traversed topology and create arcs {(7,s) | s € S} with costs 0. So, for our
problem, we have to find a directed Steiner tree for directed graph T\, (s.r), root
7, and terminals D7. ’

3.4 Relevant Retrieval Ratio R3

Building on the optimal traversal path X and the realized minimal engine
traversal path O introduced earlier, we now provide the first formal definition of
the R? metric. Unlike the previous definition [9] that relies on informal intuition,
our definition mathematically defines the relative performance of the engine
compared to the optimal approach. R? is formally defined as:

c(X)

R’ =
| O |

(6)

For this metric, higher is better, as this signifies that the traversal path
generated by the engine is closer to optimal. Figure [I] illustrates an example
topology, the optimal traversal path, and the selected traversal path. For these
paths, the R? metric is calculated as R? = % = 0.5, indicating that the cost of
the selected path is twice that of the optimal path.

The R? metric captures the traversal path followed during query execution
over the Linked Data Web. This path is largely determined by the engine’s
prioritization and traversal strategy, rather than by engine-specific optimizations
or query planning algorithms. As a result, even if execution times vary across
engines, R3 still reveals the relative performance of traversal strategies, enabling
fair comparison across different engine implementations.

(e 2]
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Fig. 1: The traversal on the left follows an inefficient dereference path (checkmarks)
to the target documents (green), compared to the optimal path on the right. The R?
metric captures this inefficiency.

3.5 Weighted Relevant Retrieval Ratio R3

The previous formulation of the R? metric assumes equal costs for each traversal
step. However, this approach overlooks real-world factors that impact query exe-
cution, such as HTTP request time, which can be influenced by server congestion
or significant physical distance between the client and server.

To account for these differences in the traversed topology graph we propose to
weigh edges by factors influencing the real-world notion of optimal traversal, like
HTTP request time. The optimal sub-graph found by Steiner tree solvers then
reflects the real-world costs of traversal. We define the weighted R® metric as
follows:

(7)

Figure [2| shows how this weighted R? metric can alter the optimal path. In
this example, one node experiences a significant delay in responding to an HTTP
request. Consequently, the optimal path changes to a route with more hops but a
shorter overall HTTP request time. Due to the change in weights, the previously
optimal path, which had R? = 1, now has R3 = % =0.73.

As is often the case, there is no universally optimal method for weighting; the
choice depends on the specific optimization target. For instance, minimizing the
size of HTTP request responses becomes crucial in environments with limited
bandwidth.

3.6 Continuous Efficiency of Link Prioritization Algorithms

In earlier sections, we examined metrics evaluating the overall performance of
prioritization algorithms against the optimal approach. However, since LTQP
produces results incrementally as they become available, it is important to assess
the algorithm’s continuous performance during query execution.

To achieve this, we propose adapting the diefficiency metrics [2], which measure
the area under the answer distribution function to assess the continuous efficiency
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Fig. 2: By considering HTTP request latency, the weighted R® metric ensures that the
computed traversal path corresponds to the real-world optimum.

of query engines. This function is constructed using an answer trace, defined
as a sequence of pairs A, = (t1,41),..., (tn, tn), where each pair records the
timestamp ¢; when the i-th answer is produced, for 1 < i < n. For non-blocking
approaches like LTQP, the answer distribution function represents the number of
results produced over time, with linear interpolation applied between arrivals.

We modify the answer trace to evaluate the continuous efficiency of link
prioritization algorithms in retrieving documents required for query answers. The
new trace, Aqg = (t1,d;), ..., (tn,dy), instead records the timestamps when the
required documents for a new answer are dereferenced. Based on this trace, we
calculate the new R3Cont at k results metric as

tr

R3ContQk = ; Aq(z)dz, (8)

where t;, denotes the time when the documents needed for the first k£ results are
retrieved. Note that this function is analogous to the DiefQk metric [2]. Thus,
R3Cont@k measures the continuous efficiency of the traversal phase of the LTQP
engine, with lower values being better

3.7 Existing Link Prioritization Algorithms

This paper establishes a baseline for link prioritization algorithms in structured de-
centralized environments. We implement existing algorithms [I7] in Comunica [34]
and release them as modular, user-friendly packages. Unlike the TP-operator-
based model [I7], our implementation uses the more widely adopted iterator-based
model [20/T4J35123]. To enable adaptive prioritization, we wrap each iterator pro-
duced during query execution with an event-driven statistics emitter, which
feeds into the prioritization strategy. Adopting this model facilitates comparisons
across query engines and promotes broader applicability.

We briefly explain the implemented algorithms, with detailed descriptions
available in the original paper [17].

Non-Adaptive Non-adaptive algorithms use a pre-defined prioritization strat-
egy. These algorithms include depth-first and breadth-first prioritization.
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Additionally, random prioritization assigns a random priority between 0 and
10 to each new link. Finally, we include an implementation of a theoretical
oracle algorithm that uses the result contribution counter of each document.
This counter is propagated across all nodes along the shortest path from the
root, to the query-relevant document.

Graph-based For graph-based prioritization, the engine iteratively builds a
directed traversed topology graph G = (V,F), representing the queried
sub-web. Links are prioritized by applying vertex scoring algorithms to this
topology. We examine two such algorithms: the first sets the priority of links
equal to their in-degree, the second uses the vertex’s PageRank score [26].

Result-based Result-based prioritization uses the traversed topology of graph-
based prioritization methods. The engine tracks the why-provenance of results
and increments the result contribution counter (RCC) of the associated
documents whenever a new result is produced. Based on these RCC' values,
[I7] introduces vertex scoring functions using the first- and second-degree
in-neighborhoods of documents, defined as:

in'(v) = {v' € V| (v',v) € E}, (9)
in*(v) = in' (v) U (|_J int(v")). (10)

v’ €int (v)
For a vertex v with an RCC' score of rce(v), four vertex scoring functions
are defined for k£ € 1, 2:

ree-k(v) = Zv,eink(v) ree(v'), (11)
rel-k(v) =| {v/ € in*(v) | rec(v’) > 0} | . (12)

The prioritization approaches based on these scoring functions are referred
to as recl, rec, rell, and rel2, respectively.

Intermediate result-based Whereas the previous approach relies on full so-
lutions, intermediate solutions can also guide prioritization decisions. The
methods IS and ISdcr first determine the number of triple patterns satisfied
by an intermediate result, storing this count as cnt. They then iterate over
each binding in the intermediate result. If a bound value corresponds to
an IRI in the look-up queue with a priority lower than cnt, its priority is
updated to cnt. For IS, initial priorities are set to 0, whereas for ISdcr, they
are initialized to one less than the final priority of the parent document.

Hybrid Approaches Hybrid prioritization approaches combine RCC-based
and intermediate solution-based methods. For each vertex in the traversed
topology, these methods track both the RCC and the IS-score. The priority
for a vertex is then calculated by multiplying its IS-score with the RCC-based
score, depending on the specific RCC scoring method used. The resulting
approaches are named is-rccl, is-rec, is-rell, and is-rel2.

Typelndex-based Finally, we introduce a simple approach to prioritize links
in a Typelndez[38], which points to files containing resources of a specific
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type. Listing shows an example of a Typelndex pointing to the loca-
tion of Comments. This algorithm is an example of prioritization based on
environment-specific attributes of a structured decentralized environment.

Listing 1.1: Example Typelndex Content

<#bqlrbe> a solid:TypeRegistration;
solid:forClass <http://example.org/Comment>;
solid:instanceContainer </public/comments/>.

4 Evaluation

This section outlines the experiments used to evaluate link prioritization. We
measure time to first and last result, excluding total execution time, since
prioritization doesn’t affect overall workload. Metrics include R3Cont@Fk and
Dief@k (with k as total results), as well as both unweighted and HTTP time-
weighted R? scores. In addition, we compare result counts relative to breadth-
first prioritization to account for timeouts, which can cause fewer results to
be produced. The goals are to assess the effectiveness of link prioritization in
structured decentralized settings, provide a baseline of prioritization performance,
and isolate algorithmic performance from implementation overhead. Experiments
are run on a dual Hexacore Intel E5645 (2.4 GHz) with 8 GB allocated to Node.js.

4.1 Benchmark

We use the SolidBench benchmark [35], the state-of-the-art benchmark for struc-
tured decentralized environments, to evaluate the prioritization algorithms. Solid-
Bench simulates a social network application, including users, posts, comments,
forum posts, and more. The benchmark uses a single ontology to describe the
relations. Furthermore, data is fragmented to represent Solid pods, where all
data related to a specific user is stored in a single pod. Using the default settings,
the benchmark generates 158,233 RDF files distributed across 1,531 data vaults,
containing a total of 3,556,159 triples.

The benchmark provides three query template types: discover, short, and
complez. In this paper, we focus on the discover queries, as all complex queries
exceed the timeout threshold, and short queries either do not traverse to new pods
or time out. Discover queries primarily test various query engine bottlenecks [35],
such as n hop link-traversal, irrelevant HT'TP request filtering, and heterogeneous
within-pod data fragmentation strategies. The timeout is set to 180 seconds, and
each query is executed 15 times in our experiment to ensure the reliability and
repeatability of the results.

4.2 Results

We report the relative arrival times of the first and last results (st and Cmpl) and
the R3 metric. Additionally, we show the number of results produced relative to
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the breadth-first baseline. Figure [3| presents 1st, Cmpl, and R? for 17 algorithms
across four representative query templates; the full results are provided in the
supplementary material. Overall, no algorithm consistently outperforms the
baseline on 1st or Cmpl. Apparent gains for templates interactive-discover 7 and
8 are due to timeouts leading to fewer results, skewing the metrics. The only
exception is the oracle, which shows slight improvements in result arrival times.

Table [2| reports the percentage of queries performing 10% better or worse
than breadth-first traversal. Overall, 1st and Cmpl are generally worse for the
prioritization algorithms compared to the baseline. As seen from the figure, the
oracle is the only algorithm to improve on the baseline.

1st Cmpl R3 R®Http Dief R3Cont

better worse‘better Worse‘better worse|better Worse‘better worse‘better worse
depth-first| 15.7 17.1] 14.3 17.1 7.5 125 7.5 25.00 25.0 27.5| 25.0 30.0
random 4.3 68.6 5.7 74.3| 15.0 15.0/ 25.0 17.5| 32.5 35.0| 27.5 25.0
in-degree 15.7 27.1| 11.4 24.3 5.0 12.5| 15.0 20.0| 30.0 22.5| 27.5 20.0
pagerank 12.9 27.1] 11.4 24.3 7.5 7.5 10.0 20.0| 32.5 25.0 25.0 17.5
rcc-1 10.0 41.4| 10.0 40.0f 12.5 10.0] 12.5 20.0f 25.0 22.5| 22.5 35.0
rcc-2 7.1 45.7 7.1 50.0/ 10.0 15.0f 15.0 17.5] 30.0 25.0| 17.5 42.5
rel-1 10.0 44.3| 12,9 44.3 7.5 7.5| 12.5 10.0] 30.0 27.5| 20.0 40.0
rel-2 7.1 45.7 8.6 47.1| 10.0 15.0] 15.0 22.5| 27.5 32.5| 25.0 37.5
is 11.4 35.7| 129 31.4| 10.0 2.5| 20.0 7.5/ 17.5 35.0/ 32.5 35.0
isdcr 2.9 329 5.7 28.6| 12,5 15.0/ 12.5 22.5| 25.0 32.5| 17.5 62.5
is-rcc-1 4.3 57.1 5.7 60.0 7.5 5.0/ 10.0 17.5] 25.0 27.5| 15.0 50.0
is-rcc-2 5.7 62.9 8.6 68.6/ 12.5 5.0/ 20.0 17.5| 25.0 27.5| 12.5 52.5
is-rel-1 7.1 64.3 5.7 61.4| 12.5 12.5| 17.5 25.0/ 32.5 15.0| 20.0 40.0
is-rel-2 5.7 614 7.1 64.3| 12,5 5.0 17.5 17.5| 37.5 27.5| 17.5 50.0
type-index| 15.7 18.6/ 10.0 15.7| 12.5 20.0/ 15.0 25.0| 27.5 30.0/ 35.0 35.0
oracle 18.6 11.4| 18.6 12.9| 25.0 2.5| 32.5 12.5| 30.0 30.0/ 72.5 10.0

Table 2: Percentage of queries for which a prioritization algorithm performs at least
10% better or worse than the breadth-first baseline. Most algorithms do not consistently
improve point-in-time or continuous result arrival times. This limitation is underscored
by the R® metrics, which show the limited effectiveness of prioritization algorithms even
when decision-making overhead is excluded.

We use the R metric to analyze why prioritization algorithms fail to improve
performance. As shown in Figure [3| and Table [2] most approaches do not signifi-
cantly change the engine’s traversal efficiency; fewer than 25% of queries show
notable differences in unweighted R3. While the HTTP-weighted B3 shows greater
variation, this is largely due to noise from our simulated network environment.
When traversal paths remain unchanged, prioritization adds overhead without
benefit, leading to reduced performance. The oracle improves traversal in 25%
of queries and continuous retrieval in 72.5%, but this rarely translates to faster
result arrival in practice. This points towards the bottleneck of result production
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Fig. 3: Result arrival times (first/last), their standard deviations, R® scores (higher is
better), and result counts relative to breadth-first prioritization. Link prioritization
yields no meaningful improvement, often performing 0-20% worse, with similar R?
values across methods.

lying elsewhere for LTQP. Overall, even a theoretically optimal prioritization has
a limited effect in structured decentralized settings like Solid.
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Further investigation identifies three key factors influencing these findings:

Query Scope and Structure Many queries, such as discover 1 to 6, target
data related to a single individual (and thus a single pod). In such cases,
Typelndexes [35], which act as an index for a pod by directly linking to
potentially relevant data, efficiently direct the engine to the correct file
containing relevant data, minimizing traversal complexity. These Typelndexes
are found in the seed document in the query, so their links are naturally
added early to the queue. As a consequence, Typelndex prioritization has
little effect. We expect similar behavior for any other indexes present in a
Solid pod, like a shape index [36]. While queries exist that target multiple
pods, these often time out and are thus difficult to analyze.

Solid Environment Design Link prioritization largely focuses on identifying
the appropriate LDP container for a query within the Solid environment.
Since related data is typically grouped within a single LDP container, the
presence of a correctly configured Typelndex reduces the need for traversing
the entire pod to find the relevant data LDP container, simplifying the
prioritization problem even when multiple pods are involved in the query.

Link Queue Dynamics During discover queries [§], the link queue is often
emptied quickly. Even when an algorithm assigns the correct priority to a
link, its impact is negligible if no alternative links are available in the queue
for concurrent dereferencing.

Query Plan Bottleneck Previous research [35] shows that link traversal join
plans are suboptimal. In cases where the query execution time is dominated
by result processing, link prioritization will have a negligible impact on result
arrival times.

These findings suggest that link prioritization has a limited impact on link
traversal performance in structured, decentralized environments. Even when
prioritization is nearly optimal, it yields only modest performance gains. Therefore,
efforts to optimize the traversal phase of LTQP should instead focus on strategies
such as pruning irrelevant data sources [36]. To rigorously evaluate these strategies,
a broader set of feasibly executable queries that traverse multiple pods is required.
The short and complex queries of SolidBench do not satisfy these requirements, as
their complexity makes them unfeasible to execute. Such benchmarks would help
researchers improve their algorithms step by step, without treating performance
as simply a matter of timing out or completing the query.

5 Conclusion

In this paper, we provided modular implementations of link traversal priori-
tization algorithms from the literature, enabling researchers to extend these
approaches with minimal effort. Additionally, we benchmarked these algorithms
in a previously unexplored context: structured decentralized environments. To
further solidify this benchmark as a baseline for future research, we formally
introduced, extended, and tested the R® metric.
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Our findings show that prioritization algorithms do not significantly improve
result arrival times compared to the baseline in structured decentralized environ-
ments. The only measured improvement came from a theoretical oracle algorithm,
but even those gains were small. Therefore, future optimization efforts in LTQP
should focus on strategies that either improve the query plan or prune irrelevant
data sources. To evaluate these approaches more effectively, a broader set of
executable queries spanning multiple pods is needed to better benchmark system
performance when traversing many links.

Supplemental Material Statement: The main repository with links to all code
needed to replicate the results is available on GitHub: https://github.com/
RubenEschauzier/r3-metric-data-processor. The raw experimental data and
full version of the paper’s figure can be found on Zenodo: https://zenodo.
org/records/15372999. The query templates used to benchmark the algo-
rithms are found on GitHub: https://github.com/SolidBench/SolidBench,
js/tree/master/templates/queries
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